Abstract
We investigated the neuroprotective effect of tacrolimus (FK506) on the ischemic cell death with respect to cytochrome c translocation and DNA fragmentation, which are pivotal events in the necrotic and apoptotic signaling pathway, using permanent focal cerebral ischemia in rats. Immunohistochemically, cytochrome c was observed in the cytoplasm as early as 1 h after middle cerebral artery (MCA) occlusion in the infarcted hemisphere. Cytosolic release of cytochrome c after MCA occlusion was also confirmed by Western blot analysis and enzyme immunoassay. Terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) showed DNA fragmentation evolving in the ipsilateral cortex and the caudate putamen after 3 and 6 h, respectively, following MCA occlusion. Tacrolimus (1 mg/kg, i.v.), administered immediately after MCA occlusion, significantly attenuated the release of cytochrome c in the ischemic region, the number of TUNEL-positive cells in the ischemic penumbra zone, and the size of cortical ischemic lesions. This study demonstrated that tacrolimus ameliorated the accumulation of cytochrome c in the cytosol and the increase of TUNEL-positive cells induced by cerebral ischemia, indicating that the neuroprotective action of tacrolimus on ischemic brain injury caused by permanent focal cerebral ischemia could partially be attributed to the attenuation of the activation of the apoptotic execution machinery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.