Abstract

Acute stroke is a major risk for morbidity and mortality in aging population. Mitochondrion has been the focus of a wide stroke-related research. This study investigated if treatment or pre-treatment with diphenyl diselenide (PhSe)2 can prevent mitochondrial damage in cerebral structures of rats induced by an ischemia and reperfusion (I/R) model. Adult male Wistar rats were assigned into five experimental groups: sham operation, ischemia/reperfusion, pre-treated+I/R, treated+I/R, and Sham+(PhSe)2. Neurological score showed the damage caused by I/R, which was partially prevented by (PhSe)2. Moreover, mitochondria of hippocampus and cortex were impaired by I/R through an increase of reactive oxygen species production, mitochondrial membrane potential (ΔΨm) and electrons flow alteration, activity of complex I deregulation as well as mitochondrial swelling. However, the ischemic damage did not induce an increase in pro-apoptotic proteins expression, but demonstrated an enhanced expression of Hsp70. The mitochondrial redox state was also altered (GSH/GSSG ratio, MnSOD, and GPx activities). Our results revealed that all treatments with (PhSe)2 significantly reduced the mitochondrial damage induced by I/R. These findings suggest that neuroprotective properties of (PhSe)2 may be attributed to the maintenance of mitochondrial redox balance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call