Abstract

BackgroundInterleukin-33 (IL-33) is a well-recognized pleiotropic cytokine which plays crucial roles in immune regulation and inflammatory responses. Recent studies suggest that IL-33 and its receptor ST2 are involved in the pathogenesis of neurological diseases. Here, we explore the effect of IL-33/ST2 signaling in neonatal hypoxic-ischemic (HI) brain injury and elucidate the underlying mechanisms of action.MethodsThe brain HI model was established in neonatal C57BL/6 mice by left common carotid artery occlusion with 90 min hypoxia and treated with IL-33 at a dose of 0.2 μg/day i.p. for 3 days. TTC staining and neurobehavioral observation were used to evaluate the HI brain injury. Immunofluorescence and flow cytometry were applied to determine the expression of IL-33 and its receptor ST2 on brain CNS cells and cell proliferation and apoptosis. OGD experiment was used to assay the viability of astrocytes and neurons. RT-qPCR was used to measure the expression of neurotrophic factor-associated genes.ResultsThe expression level of IL-33 was markedly enhanced in astrocytes 24 h after cerebral HI in neonatal mice. Exogenous delivery of IL-33 significantly alleviated brain injury 7 days after HI, whereas ST2 deficiency exacerbated brain infarction and neurological deficits post HI. Flow cytometry analyses demonstrated high levels of ST2 expression on astrocytes, and the expression of ST2 was further elevated after HI. Intriguingly, IL-33 treatment apparently improved astrocyte response and attenuated HI-induced astrocyte apoptosis through ST2 signaling pathways. Further in vitro studies revealed that IL-33-activated astrocytes released a series of neurotrophic factors, which are critical for raising neuronal survival against oxygen glucose deprivation.ConclusionsThe activation of IL-33/ST2 signaling in the ischemic brain improves astrocyte response, which in turn affords protection to ischemic neurons in a glial-derived neurotrophic factor-dependent manner.

Highlights

  • Interleukin-33 (IL-33) is a well-recognized pleiotropic cytokine which plays crucial roles in immune regulation and inflammatory responses

  • It has been recently observed that both IL-33 and its receptor ST2 mRNA are expressed at high levels in the central nervous system (CNS) [11]

  • HI injury induces an elevation of IL-33 in the neonatal brain To identify the involvement of IL-33 in post-HI neuroprotection, we firstly examined the expression of IL-33 on the brain after HI injury in neonatal mice

Read more

Summary

Introduction

Interleukin-33 (IL-33) is a well-recognized pleiotropic cytokine which plays crucial roles in immune regulation and inflammatory responses. Recent studies suggest that IL-33 and its receptor ST2 are involved in the pathogenesis of neurological diseases. Perinatal hypoxic-ischemic encephalopathy (HIE) is a common and devastating disease that is a primary cause of neonatal mortality and long-term neurological deficits in children [1,2,3]. HIE in the newborn often results from a hypoxic event and subsequent insufficient cerebral blood flow to the brain, leading to millions of neonatal death or long-term disabilities every year [4]. IL-33 is constitutively expressed in the nuclei of endothelial and epithelial cells with barrier function, or to be released into the extracellular space, as an alarmin, after tissue damage to alert the immune system [9]. The effect of IL-33/ST2 axis in neonatal hypoxic-ischemic brain injury remains unclear

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.