Abstract

Depression is a psychiatric disorder and chronic stress, leading to altered glucocorticoid secretion patterns, is one of the factors that induce depression. Our previous study showed that amantadine significantly attenuated the impairments of synaptic plasticity and cognitive function a rat model of CUS. However, little is known regarding the underlying mechanism. In the present study, the whole-cell patch-clamp technique was applied to examine the protection effect of amantadine on the hippocampus CA3-CA1 pathway. Evoked excitatory postsynaptic currents (eEPSCs), miniature excitatory postsynaptic currents (mEPSCs), paired-pulse ratio (PPR) and the action potentials of CA3 neurons were recorded. Our data showed that corticosterone increased the amplitude of eEPSCs and decreased the value of paired-pulse ratio (PPR), but both of them were significantly reversed by amantadine. In addition, the frequency of mEPSC was considerably increased by corticosterone, but it was reduced by amantadine. Moreover, we used the Fluo-3/AM image to detect the Ca2+ influx in primary cultured hippocampal neurons. The results showed that the intracellular calcium levels were significantly decreased by amantadine in the corticosterone treated neurons. Additionally, the superoxide dismutase (SOD) and catalase (CAT) activities were reduced by corticosterone, while they were enhanced by either amantadine or low-calcium artificial cerebral spinal fluid (ACSF). These results suggest that amantadine significantly improves corticosterone-induced abnormal glutamatergic synaptic transmission of CA3-CA1 synapses presynaptically and alleviates the activities of antioxidant enzymes via regulating the calcium influx.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.