Abstract

20(S)-protopanaxadiol (PPD), one of the ginsenosides from Panax ginseng, has been reported to improve performance with dementia. This study aimed to investigate the neuroprotective effect of PPD attenuating NLRP3 inflammasome-mediated microglial pyroptosis in vascular dementia (VD) rats induced by bilateral common carotid artery ligation (2-VO). Male Sprague-Dawley rats (SPF, 150–180 g, n = 10/group) were randomly divided into PPD (20, 10, 5 mg/kg, subcutaneous injection once per day for 3 weeks), model, and vehicle-sham group. It was found that PPD significantly reversed 2-VO-induced cognitive impairment by decreasing escape latency and spontaneous alternation and increasing the number of crossing platforms, showing memory‐improving effects. PPD improved the pathological morphology of brain tissue in VD rats. PPD significantly reduced the cerebral infarction area and the activation of microglia in the cortex and hippocampal DG, CA1, and CA3 area. Moreover, PPD could attenuate NLRP3 inflammasome-mediated microglial pyroptosis, inhibit the positive expression of NLRP3, decrease IL-1β, and IL-18 levels, and increase IL-10 levels in the brain cortex. PPD also significantly alleviated the neurotoxicity by decreasing the Aβ and p-Tau in hippocampal DG, CA1, and CA3 areas. In addition, the levels of NLRP3, ASC, and IL-1β in the cortex, APP, BACE1, and p-Tau in the hippocampus were significantly reduced by PPD. These results suggested that PPD hinders microglial activation to alleviate neuroinflammation of NLRP3 inflammasome and inhibits neurotoxicity of Aβ deposition and Tau phosphorylation in 2-VO-induced VD rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call