Abstract

1,3-Dipalmitoyl-2-oleoylglycerol (POP) is a triacylglyceride found in oils from various natural sources, including palm kernels, sunflower seeds, and rice bran. In the current study, the neuroprotective effects and the specific mechanism of POP derived from rice bran oil were investigated for the first time using the middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats. Orally administered POP at 1, 3, or 5 mg/kg (three times: 0.5 h before MCAO, after 1 h of MCAO, and after 1 h of reperfusion) markedly reduced the MCAO/R-induced infarct/edema volume and neurobehavioral deficits. Glutathione depletion and the oxidative degradation of lipids in the rat brain induced by MCAO/R were prevented by POP administration. The upregulation of phosphorylated p38 MAPKs, inflammatory factors (inducible nitric oxide synthase (i-NOS) and cyclooxygenase-2 (COX-2)), and pro-apoptotic proteins (B-cell lymphoma-2 (Bcl-2) associated X protein (Bax) and cleaved caspase-3) and the downregulation of the anti-apoptotic protein (Bcl-2) in the ischemic brain were significantly inhibited by POP administration. In addition, downregulation of phosphatidylinositol 3′-kinase (PI3K), phosphorylated protein kinase B (Akt), and phosphorylated cyclic (adenosine monophosphate) AMP responsive element-binding protein (CREB) expression in the ischemic brain was inhibited by POP administration. These results suggest that POP might exert neuroprotective effects by inhibition of p38 MAPK and activation of PI3K/Akt/CREB pathway, which is associated with anti-oxidant, anti-apoptotic, and anti-inflammatory action. From the above results, the present study provides evidence that POP might be effectively applied for the management of cerebral ischemia-related diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call