Abstract

Progression of blinding diseases, such as age-related macular degeneration, is accelerated by light exposure. However, no particular intervention is applied to the photostress. Here, we report neuroprotective effects of the adenosine monophosphate (AMP)-activated protein kinase (AMPK) activator, 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), on light-induced visual function impairment, photoreceptor disorders and death in mice. Increase in retinal ATP levels in response to photostress was transient, because oxygen consumption rate (OCR) and cytochrome c oxidase (CcO) activity were reduced under photostress. However, AICAR treatment preserved OCR, CcO activity, and high levels of retinal ATP after light exposure. AMPK knockdown in the photoreceptor-derived cell line revealed that AMPK targeted CcO activity. Further, our data indicated that photostress reduced mitochondrial respiratory function and ATP levels, while AICAR treatment promoted neuronal survival and retained visual function, stabilizing ATP levels through preserved CcO activity. The current study has provided proof of concept for providing cells with sufficient energy to promote cell survival in the presence of cellular stress. This is in contrast to the previous reports which primarily investigated therapeutic approaches to suppress stress signals. Hence, stabilization of the ATP supply may serve as a novel therapeutic approach to support tissue survival under stress and prevent neurodegeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.