Abstract

Isoflurane, one of the commonly used inhalation anesthetics worldwide in clinical practice, may generate substantial risks of neurotoxicity in the developing brains. The present study aimed to illustrate the effects and underlying mechanisms of miR-214 on isoflurane-induced neurotoxicity in human neuroblastoma cell line SH-SY5Y. SH-SY5Y cells were transfected with miR-214 or miR-con alone or in combination with pcDNA empty vector or pcDNA-PTEN in the presence of 3% isoflurane and incubated for 48 h. Cell viability, lactate dehydrogenase (LDH) release, apoptosis, and caspase-3/7 activity were evaluated using CCK-8, LDH release assay, flow cytometry analysis, and caspase-3/7 activity assay, respectively. The superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) activities were measured using commercial kits. miR-214 expression and alterations of the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway were detected by qRT-PCR and Western blot, respectively. The interaction between miR-214 and PTEN was explored by luciferase reporter assay. We found that isoflurane exposure induced neurotoxicity in SH-SY5Y cells, as evidenced by the reduced cell viability, increased LDH release, apoptotic rate, caspase-3/7 activity, and oxidative stress levels. Moreover, isoflurane exposure decreased the expression of miR-214 and affected the PTEN/PI3K/Akt pathway in SH-SY5Y cells. miR-214 overexpression significantly suppressed isoflurane-induced viability reduction, LDH release, apoptosis and oxidative stress, as well as inactivation of the PI3K/Akt pathway in SH-SY5Y cells. Interestingly, PTEN was identified as a target of miR-214. Moreover, PTEN upregulation blocked the effects of miR-214 on isoflurane-induced neurotoxicity in SH-SY5Y cells. In conclusion, miR-214 protected against isoflurane-induced neurotoxicity in SH-SY5Y cells via regulation of PI3K/Akt pathway by targeting PTEN, contributing to better understanding the underlying mechanisms of anesthetics-induce neurotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call