Abstract

BackgroundMammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates cell growth and metabolism and integrates various signals under physiological and pathological conditions. Altered signaling of mTOR has been shown to play pathogenic roles in ischemic stroke. In the present study, the protective effect of everolimus, the selective mTOR inhibitor, in the middle cerebral artery occlusion (MCAO) model of ischemic stroke was evaluated. MethodsWistar rats were exposed to MCAO (30 min) followed by reperfusion for 24 h. Everolimus (100, and 500 µg/kg) was administered at the time of reperfusion, intraperitoneally. 24 h post operation, the neurological function, infarct volume, histopathological alterations and the markers of oxidative stress including superoxide dismutase (SOD) activity, malondialdehyde (MDA), and total thiol levels were analyzed in the peri-infarct region. ResultsIn the rats subjected to MCAO, everolimus ameliorated neurological deficits, neuronal cell loss, and infarct volume, as compared to the stroke group. Also, everolimus significantly increased SOD activity and total thiol content, while markedly decreased the MDA level, as compared to MCAO group. ConclusionSingle-dose administration of everolimus significantly improved neurological deficits and inhibited cortical cell loss by enhancing redox status, subsequently protected cerebral ischemia-reperfusion injury in rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call