Abstract

Neuroinflammation triggered by chronic cerebral ischemia-induced microglial pyroptosis is a significant contributor to vascular cognitive impairment. It has been shown that emodin possesses anti-inflammatory and neuroprotective properties, however, it's potential molecular and signaling transduction pathway remains to be illuminated. This study researched the neuroprotective mechanisms of emodin focussing on emodin effects on lipopolysaccharide/adenosine triphosphate (LPS/ATP)-caused pyroptosis in BV2 cells and HT-22 hippocampal neurons. To explore the neuroprotective effect of emodin, Emodin was applied to BV2 cells, HT-22 hippocampal neurons, and BV2/HT-22 co-cultures stimulated with LPS/ATP to evaluate the cell morphology, levels of inflammatory factors, NLRP3 inflammatory inflammasome activity and focal pyroptosis-related protein expression, as same as neuronal apoptosis. Emodin alleviated LPS/ATP-induced pyroptosis of BV2 cells by preventing the activity of the NLRP3 inflammasome and the cleavage of pyroptosis executive protein Gasdermin D (GSDMD). Furthermore, levels of interleukin (IL)-18, IL-1β and tumor necrosis factor (TNF)-α were reduced, the apoptosis of HT-22 hippocampal neurons was attenuated, and cell viability was restored. Emodin can antagonize microglial neurotoxicity by inhibiting microglial pyroptosis, thereby exerting anti-inflammatory and neuroprotective effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call