Abstract
Evidence exists reporting that miR-410 may rescue neurological deficits, neuronal injury, and neuronal apoptosis after experimental hypoxic ischemia. This study aimed to explore the mechanism by which miR-410 transferred by bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) may alleviate hypoxic-ischemic brain damage (HIBD) in newborn mice. BMSCs were isolated from total bone marrow cells of femur and tibia of newborn mice, and primary neurons were extracted from the cerebral cortex of newborn mice within 24h of birth. EVs were extracted from BMSCs transfected with the mimic or inhibitor of miR-410. Primary neurons were subjected to hypoxia and treated with overexpression (oe)-HDAC4, small interfering RNA (siRNA)-β-catenin, or Wnt pathway inhibitor and/or EV (miR-410 mimic) or EV (miR-410 inhibitor). A neonatal mouse HIBD model was established and treated with EVs. When BMSC-EVs were endocytosed by primary neurons, miR-410 was upregulated, neuronal viability was elevated, and apoptosis was inhibited. miR-410 in BMSC-EVs targeted HDAC4, thus increasing neuronal viability and reducing apoptosis. Conversely, overexpression of HDAC4 activated the Wnt pathway and enhanced the nuclear translocation of β-catenin. Treatment with miR-410-containing BMSC-EVs improved learning and memory abilities of HIBD mice while attenuating apoptosis by inactivating the Wnt pathway via targeting HDAC4. Taken together, the findings suggest that miR-410 delivered by BMSC-EVs alleviates HIBD by inhibiting HDAC4-dependent Wnt pathway activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.