Abstract
Pretreatment of cultured hippocampal neurons with a low concentration of alpha-tocopherol (alpha-TP), the major component of vitamin E, results in a long-lasting protection against oxidative damages, via genomic effects. This neuroprotection is associated with the attenuation of a calcium influx triggered by oxidative agents such as Fe(2+) ions. This Ca(2+) influx is supported by a TRP-like channel, also partly involved in capacitive calcium entry within neurons. Here, we evidence the contribution of TRPV1 channels in this mechanism. TRPV1 channels are activated by various agents including capsaicin, the pungent component of hot chili peppers and blocked by capsazepine (CPZ) or 5'-iodo-resiniferatoxin. Both TRPV1 inhibitors strongly reduced Fe(2+) ion-mediated toxicity and Ca(2+) influx, in the same way as to alpha-TP pretreatment. Moreover, CPZ also decreased capacitive calcium entry in hippocampal neurons. Finally, both CPZ and 5'-iodo-resiniferatoxin reduced spontaneous excitatory synaptic transmission; this depression of synaptic transmission being largely occluded in alpha-TP-pretreated neurons. In conclusion, in our experimental model, TRPV1 channels are involved in the Fe(2+) ion-induced neuronal death and a negative modulation of this channel activity by alpha-TP pretreatment may account, at least in part, for the long-lasting neuroprotection against oxidative stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.