Abstract

BackgroundPerinatal brain injury is complex and often associated with both inflammation and hypoxia-ischaemia (HI). In adult inflammatory brain injury models, therapies to increase acetylation are efficacious in reducing inflammation and cerebral injury. Our aim in the present study was to examine the neuropathological and functional effects of the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) in a model of neonatal lipopolysaccharide (LPS)-sensitised HI. We hypothesised that, by decreasing inflammation, TSA would improve injury and behavioural outcome. Furthermore, TSA’s effects on oligodendrocyte development, which is acetylation-dependent, were investigated.MethodsOn postnatal day 8 (P8), male and female mice were exposed to LPS together with or without TSA. On P9 (14 hours after LPS), mice were exposed to HI (50 minutes at 10% O2). Neuropathology was assessed at 24 hours, 5 days and 27 days post-LPS/HI via immunohistochemistry and/or Western blot analysis for markers of grey matter (microtubule-associated protein 2), white matter (myelin basic protein) and cell death (activated caspase-3). Effects of TSA on LPS or LPS/HI-induced inflammation (cytokines and microglia number) were assessed by Luminex assay and immunohistochemistry. Expression of acetylation-dependent oligodendrocyte maturational corepressors was assessed with quantitative PCR 6 hours after LPS and at 24 hours and 27 days post-LPS/HI. Animal behaviour was monitored with the open-field and trace fear-conditioning paradigms at 25 days post-LPS/HI to identify functional implications of changes in neuropathology associated with TSA treatment.ResultsTSA induced increased Ac-H4 in females only after LPS exposure. Also only in females, TSA reduced grey matter and white matter injury at 5 days post-LPS/HI. Treatment altered animal behaviour in the open field and improved learning in the fear-conditioning test in females compared with LPS/HI-only females at 25 days post-HI. None of the inflammatory mechanisms assessed that are known to mediate neuroprotection by HDACi in adults correlated with improved outcome in TSA-treated neonatal females. Oligodendrocyte maturation was not different between the LPS-only and LPS + TSA-treated mice before or after exposure to HI.ConclusionsHyperacetylation with TSA is neuroprotective in the female neonatal mouse following LPS/HI and correlates with improved learning long-term. TSA appears to exert neuroprotection via mechanisms unique to the neonate. Deciphering the effects of age, sex and inflammatory sensitisation in the cerebral response to HDACi is key to furthering the potential of hyperacetylation as a viable neuroprotectant. TSA did not impair oligodendrocyte maturation, which increases the possible clinical relevance of this strategy.

Highlights

  • Perinatal brain injury is complex and may be associated with both inflammation and hypoxia-ischaemia (HI)

  • Deciphering the effects of age, sex and inflammatory sensitisation in the cerebral response to histone deacetylase inhibitor (HDACi) is key to furthering the potential of hyperacetylation as a viable neuroprotectant

  • Trichostatin A dose-response trial following lipopolysaccharide exposure Using Western blot analysis, we demonstrated that trichostatin A (TSA) dose-dependently increased H4 acetylation in the brain at 14 hours after LPS exposure (Figure 2) (P < 0.001 by one-way analysis of variance (ANOVA)), as previously reported [32]

Read more

Summary

Introduction

Perinatal brain injury is complex and may be associated with both inflammation and hypoxia-ischaemia (HI). Our aim in the present study was to examine the neuropathological and functional effects of the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) in a model of neonatal lipopolysaccharide (LPS)-sensitised HI. Experimental studies have shown that inflammation sensitises the neonatal brain to HI injury, possibly by increasing levels of proinflammatory cytokines [1,2]. Histone deacetylase inhibitor (HDACi) treatment results in an accumulation of acetylated proteins, which has been shown to either increase gene expression by reducing chromatin compaction or reduce gene activation via increases in repressor transcription [3,4]. HDACis reduce expression of proinflammatory-associated molecules such as p53 and NFκB and induce heat shock proteins (HSPs) in sterile adult inflammatory models [5,6,7]. Epigenetic regulation, including HDAC class I/II activity, is required for normal brain development, including acquisition of sexually dimorphic brain structure [10] and the proliferation and differentiation of oligodendrocytes [11,12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call