Abstract

Identifying novel neuroprotectants that can halt or reverse the neurological effects of stroke is of interest to both clinicians and scientists. We and others previously showed the pre-clinical neuroprotective efficacy of neuregulin-1 (NRG-1) in rats following focal brain ischemia. In this study, we examined neuroprotection by exogenous and endogenous NRG-1 using a mouse model of ischemic stroke. C57BL6 mice were subjected to middle cerebral artery occlusion (MCAO) followed by reperfusion. NRG-1 or vehicle was infused intra-arterially (i.a.) or intravenously (i.v.) after MCAO and before the onset of reperfusion. NRG-1 treatment (16μg/kg; i.a.) reduced cerebral cortical infarct volume by 72% in mice when delivered post-ischemia. NRG-1 also inhibited neuronal injury as measured by Fluoro Jade B labeling and rescued NeuN immunoreactivity in neurons. Neuroprotection by NRG-1 was also observed in mice when administered i.v. (100μg/kg) in both male and female mice. We investigated whether endogenous NRG-1 was neuroprotective using male and female heterozygous NRG-1 knockout mice (NRG-1+/-) compared with wild-type mice (WT) littermates. NRG-1+/- and WT mice were subjected to MCAO for 45min, and infarct size was measured 24h following MCAO. NRG-1+/- mice displayed a sixfold increase in cortical infarct size compared with WT mice. These results demonstrate that NRG-1 treatment mitigates neuronal damage following cerebral ischemia. We further showed that reduced endogenous NRG-1 results in exacerbated neuronal injury in vivo. These findings suggest that NRG-1 represents a promising therapy to treat stroke in human patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.