Abstract

Citicoline and cerebrolysin are two unique yet contentious medications because of inconsistencies in efficacy as well as the mystery surrounding their mode of action. The current study aimed to re-validate the neuroprotective benefits of these medications and investigate the possible molecular mechanism. Neuro-2A cells were exposed to tert-butyl hydroperoxide, a consistent in vitro model of neuronal damage caused by oxidative stress. The3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, acridine orange/ethidium bromide (AO-EtBr) staining, and phase-view examinations were utilized to evaluate cell survival and cytotoxicity. Real-time reverse transcription-polymerase chain reaction (RT-PCR)-based gene expression studies were conducted. Observations revealed that these two medications had modest but considerable neuroprotective effects. While the majority of the genes' expressions remained unchanged, cerebrolysin upregulated Neuregulin 1, and both upregulated brain-derived neurotrophic factor (BDNF) expression. The findings of the current study may be the first to suggest that citicoline and cerebrolysin may increase host cells' defense mechanisms (secretion neurotrophic factors) rather than carrying nutrients for cell survival. Because of its simplicity, the current study can readily be repeated to learn more about these two disputed medications for treating ischemic stroke.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.