Abstract
Oxidative stress results from an oxidant/antioxidant imbalance, an excess of oxidants, and/or a depletion of antioxidants. A considerable body of recent evidence suggests that oxidative stress and exaggerated production of reactive oxygen species play a major role in several aspects of inflammation. Hypericum perforatum is a medicinal plant species containing many polyphenolic compounds, namely, flavonoids and phenolic acids. Because polyphenolic compounds have high antioxidant potential, in this study, we evaluated the effect of H. perforatum (given at 30 mg . kg (-1)) in an experimental animal model of spinal cord injury, which was induced by the application of vascular clips to the dura via a four-level T5 through T8 laminectomy. The degree of (a) spinal cord inflammation and tissue injury (histological score), (b) nitrotyrosine, (c) poly(adenosine diphosphate-ribose), (d) neutrophils infiltration, and (e) the activation of signal transducer and activator transcription 3 was markedly reduced in spinal cord tissue obtained from H. perforatum extract-treated mice. We have also demonstrated that H. perforatum extract significantly ameliorated the recovery of limb function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.