Abstract

Bone marrow fibrosis in myeloproliferative neoplasm (MPN), myelodysplastic syndromes (MDS), MPN/MDS overlap syndromes and acute myeloid leukemia (AML) is associated with poor prognosis and early treatment failure. Myelofibrosis (MF) is accompanied by reprogramming of multipotent bone marrow mesenchymal stromal cells (MSC) into osteoid and fiber-producing stromal cells. We demonstrate NRP2 and osteolineage marker NCAM1 (neural cell adhesion molecule 1) expression within the endosteal niche in normal bone marrow and aberrantly in MPN, MDS MPN/MDS overlap syndromes and AML (n = 99), as assessed by immunohistochemistry. Increased and diffuse expression in mesenchymal stromal cells and osteoblasts correlates with high MF grade in MPN (p < 0.05 for NRP2 and NCAM1). Single cell RNA sequencing (scRNAseq) re-analysis demonstrated NRP2 expression in endothelial cells and partial co-expression of NRP2 and NCAM1 in normal MSC and osteoblasts. Potential ligands included transforming growth factor β1 (TGFB1) from osteoblasts and megakaryocytes. Murine ThPO and JAK2V617F myelofibrosis models showed co-expression of Nrp2 and Ncam1 in osteolineage cells, while fibrosis-promoting MSC only express Nrp2. In vitro experiments with MC3T3-E1 pre-osteoblasts and analysis of Nrp2-/- mouse femurs suggest that Nrp2 is functionally involved in osteogenesis. In summary, NRP2 represents a potential novel druggable target in patients with myelofibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.