Abstract

Central sensitisation is a key mechanism of migraine; understanding its modulation by anti-migraine drugs is essential for rationalising treatment. We used an animal model of central trigeminal sensitisation to investigate neuronal responses to dural electrical stimulation as a putative electrophysiological marker of sensitisation and its modulation by ketorolac. In anaesthetised rats, responses of single convergent wide-dynamic range neurons of the spinal trigeminal nucleus to dural electrical simulation were recorded in parallel to their ongoing activity and responses to facial mechanical stimulation before and after a short-term dural application of an IS. Both ongoing activity and responses to dural electrical stimuli were enhanced by the inflammatory challenge, whereas neuronal thresholds to mechanical skin stimulation were reduced (p < .05, N = 12). Intravenous ketorolac (2 mg/kg, N = 6) reduced ongoing activity and responses to dural electrical stimulation, and increased mechanical thresholds versus vehicle controls (p < .05, N = 6). We conclude that neuronal responses to dural electrical stimulation can serve as a suitable marker which together with admitted electrophysiological signs can objectively detect central trigeminal sensitisation and its modulation by anti-migraine treatments in this preclinical model of migraine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.