Abstract

Musicians have a more accurate temporal and tonal representation of auditory stimuli than their non-musician counterparts (Musacchia et al., 2007; Parbery-Clark et al., 2009a; Zendel and Alain, 2009; Kraus and Chandrasekaran, 2010). Musicians who are adept at the production and perception of music are also more sensitive to key acoustic features of speech such as voice onset timing and pitch. Together, these data suggest that musical training may enhance the processing of acoustic information for speech sounds. In the current study, we sought to provide neural evidence that musicians process speech and music in a similar way. We hypothesized that for musicians, right hemisphere areas traditionally associated with music are also engaged for the processing of speech sounds. In contrast we predicted that in non-musicians processing of speech sounds would be localized to traditional left hemisphere language areas. Speech stimuli differing in voice onset time was presented using a dichotic listening paradigm. Subjects either indicated aural location for a specified speech sound or identified a specific speech sound from a directed aural location. Musical training effects and organization of acoustic features were reflected by activity in source generators of the P50. This included greater activation of right middle temporal gyrus and superior temporal gyrus in musicians. The findings demonstrate recruitment of right hemisphere in musicians for discriminating speech sounds and a putative broadening of their language network. Musicians appear to have an increased sensitivity to acoustic features and enhanced selective attention to temporal features of speech that is facilitated by musical training and supported, in part, by right hemisphere homologues of established speech processing regions of the brain.

Highlights

  • Research investigating the neural mechanisms involved in the processing of music and language has expanded from Bever and Chiarello’s (1974) proposed hemispheric specialization to Tallal and Gaab’s (2006) identification of similar neural areas to the evolving neuroanatomical models of Hickok and Poeppel (2000, 2007)

  • The present study examined whether alterations stemming from musical training were lateralized to traditional left language areas or extended into right hemisphere homologues for speech processing

  • Mean correct responses and a between subjects t-test performed using SPSS showed that musical training did not improve the ability to detect correct stimuli based upon differences in voice onset time [t(10) = 0.470, p = 0.649]

Read more

Summary

Introduction

Research investigating the neural mechanisms involved in the processing of music and language has expanded from Bever and Chiarello’s (1974) proposed hemispheric specialization to Tallal and Gaab’s (2006) identification of similar neural areas to the evolving neuroanatomical models of Hickok and Poeppel (2000, 2007). Musical training enhances language processing by altering neural networks for perception and processing of speech (Thompson et al, 2003; Schön et al, 2004; Moreno and Besson, 2006; Besson et al, 2007; Parbery-Clark et al, 2009a; Shahin, 2011). In addition to enhancing activity in speech processing areas, musicians may engage right hemisphere music processing areas for the perception of speech. The present study examined whether alterations stemming from musical training were lateralized to traditional left language areas or extended into right hemisphere homologues for speech processing

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.