Abstract

Speech perception depends on the dynamic interplay of bottom-up and top-down information along a hierarchically organized cortical network. Here, we test, for the first time in the human brain, whether neural processing of attended speech is dynamically modulated by task demand using a context-free discrimination paradigm. Electroencephalographic signals were recorded during 3 parallel experiments that differed only in the phonological feature of discrimination (word, vowel, and lexical tone, respectively). The event-related potentials (ERPs) revealed the task modulation of speech processing at approximately 200ms (P2) after stimulus onset, probably influencing what phonological information to retain in memory. For the phonological comparison of sequential words, task modulation occurred later at approximately 300ms (N3 and P3), reflecting the engagement of task-specific cognitive processes. The ERP results were consistent with the changes in delta-theta neural oscillations, suggesting the involvement of cortical tracking of speech envelopes. The study thus provides neurophysiological evidence for goal-oriented modulation of attended speech and calls for speech perception models incorporating limited memory capacity and goal-oriented optimization mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call