Abstract

ObjectiveRepetitive transcranial magnetic stimulation (rTMS) is effective for treatment resistant depression (TRD), but little is known about rTMS’ effects on neurophysiological markers. We previously identified neurophysiological markers in depression (N45 and N100) of GABA receptor mediated inhibition. Here, we indexed TMS-electroencephalographic (TMS-EEG) effects of rTMS. MethodsTMS-EEG data was analyzed from a double blind 2:1 randomized active (10 Hz left/bilateral):sham rTMS TRD trial. Participants underwent TMS-EEG over left dorsolateral prefrontal cortex (DLPFC) before and after 6 weeks of rTMS. 30 had useable datasets. TMS-evoked potentials (TEP) and components (N45, N100, P60) were examined with global mean field analysis (GMFA) and locally in DLPFC regions of interest. ResultsThe N45 amplitude differed between active and sham groups over time, N100 amplitude did not. N45 (t = 2.975, p = 0.007) and N100 amplitudes (t = 2.177, p = 0.042) decreased after active rTMS, demonstrating alterations in cortical inhibition. TEP amplitudes decreased after active rTMS in left (t = 4.887, p < 0.001) and right DLPFC (t = 4.403, p < 0.001) not sham rTMS, demonstrating alterations in cortical excitability. ConclusionsOur results provide important new knowledge regarding rTMS effects on TMS-EEG measures in TRD, suggesting rTMS reduces neurophysiological markers of inhibition and excitability. SignificanceThese findings uncover potentially important neurophysiological mechanisms of rTMS action.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call