Abstract

Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control.

Highlights

  • Meditation has been described as a training in awareness which over long periods of time produces definite changes in perception, attention, and cognition

  • Maximum changes occurred in mid latency evoked potentials (EPs) suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas

  • Articles were excluded from the review if (i) they reported event-related potentials (ERPs) rather than EPs (19 articles were excluded for this reason) and (ii) they did not deal directly with the subject of meditation (5 articles were excluded for this reason), (iii) the articles were not experimental studies but BioMed Research International were review articles or descriptive (5 articles were excluded for this reason), and (iv) the study recorded variables other than EPs such as EEG, MRI, and spectroscopy studies (10 articles were excluded for this reason)

Read more

Summary

Introduction

Meditation has been described as a training in awareness which over long periods of time produces definite changes in perception, attention, and cognition. The neurophysiological correlates of meditation have been determined by electrophysiological recordings (from the 1960s to the present time) and more recently by neuroimaging studies (from the 1980s till the present time). Among electrophysiological variables sensory evoked potentials (EPs) provide a relatively noninvasive way of studying changes in specific sensory pathways during meditation [1]. It is believed that meditation alters cortical functioning and corticofugal controls which may significantly modify the processing of information at brainstem and thalamic levels [2,3,4]. Mid, and long latency EPs would be expected to help map changes from the brainstem up to the association or secondary cortical areas [5]. The present review was undertaken to determine which modalities and latencies of EPs were recorded in meditation and the conclusions derived

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call