Abstract

miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124–expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology.

Highlights

  • MicroRNAs are,22 nucleotide regulatory RNAs that function primarily as post-transcriptional repressors

  • Relatively little is understood about their endogenous requirements and impact, especially in animal systems

  • We analyzed a knockout of Drosophila mir-124, which is conserved in sequence and neuronal expression across the animal kingdom, and predicted to have hundreds of mRNA targets

Read more

Summary

Introduction

MicroRNAs (miRNAs) are ,22 nucleotide (nt) regulatory RNAs that function primarily as post-transcriptional repressors. MiRNAs have propensity to target mRNAs via 6–7 nt motifs complementary to their 59 ends, termed ‘‘seed’’ regions [1,2,3,4]. MiR-124 is strictly conserved in both primary sequence and spatial expression pattern, being restricted to the nervous system of diverse metazoans, including flies [8], nematodes [9], Aplysia [10], and all vertebrates studied [11,12,13]. Such conservation implies substantial functions of miR-124 in controlling neural gene expression. MiR-124 provided one of the first illustrations of spatially anticorrelated expression of a miRNA and its targets [15], and was exploited for analysis of Ago-bound target transcripts [16,17,18,19] and direct identification of Ago-bound target sites [20]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call