Abstract

Guillain-Barré syndrome, which is a variant of acute inflammatory neuropathy, is associated with anti-GM1 antibodies and causes ataxia. We investigated the effects of IgG anti-GM1 monoclonal antibody (IgG anti-GM1 mAb) on spontaneous muscle action potentials in a rat spinal cord-muscle co-culture system and the localization of IgG anti-GM1 mAb binding in the rat hemi-diaphragm. The frequency of spontaneous muscle action potentials in innervated muscle cells was acutely inhibited by IgG anti-GM1 mAb. When cultures were pretreated with GM2 synthase antisense oligodeoxynucleotide, IgG anti-GM1 mAb failed to inhibit spontaneous muscle action potentials, demonstrating the importance of the GM1 epitope in the action of IgG anti-GM1 mAb. Immunohistochemistry of rat hemi-diaphragm showed that IgG anti-GM1 mAb binding overlapped with neurofilament 200 (NF200) antibodies staining, but not α-bungarotoxin (α-BuTx) staining, demonstrating that IgG anti-GM1 mAb was localized at the presynaptic nerve terminal. IgG anti-GM1 mAb binding overlapped with syntaxin antibody and S-100 antibody in the nerve terminal. After collagenase treatment, IgG anti-GM1 mAb and NF200 antibodies did not show staining, but α-BuTx selectively stained the hemi-diaphragm. IgG anti-GM1 mAb binds to the presynaptic nerve terminal of neuromuscular junctions. Therefore, we suggest that the inhibitory effect of IgG anti-GM1 mAb on spontaneous muscle action potentials is related to the GM1 epitope in presynaptic motor nerve terminals at the NMJs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call