Abstract

Astronauts often report experiences of awe and wonder while traveling in space. This paper addresses the question of whether awe and wonder can be scientifically investigated in a simulated space travel scenario using a neurophenomenological method. To answer this question, we created a mixed-reality simulation similar to the environment of the International Space Station. Portals opened to display simulations of Earth or Deep Space. However, the challenge still remained of how to best capture the resulting experience of participants. We could use psycholog- ical methods, neuroscientific methods or philosophical methods. Each of these approaches offer many benefits, but each is also limited. Neurophenomenology capitalises on and integrates all three methods. We employed questionnaires from psychology, electroencephalography, electrocardiography, and functional near-infrared spectroscopy from neuroscience, and a phenomenological interview technique from philosophy. This neurophenomenological method enabled extensive insight in experiencers and non-experiencers of awe and wonder (AW) in a simulated space scenario that otherwise would not have been possible. Traditional empirical analyses were completed, followed by individual differences analyses using interview transcriptions paired with physiological responses. Experiencers of AW showed differences in theta and beta activity throughout the brain compared to non-experiencers. Questionnaires indicated that non-experiencers of AW gave more positive responses of religious and spiritual practices than experiencers of AW. Interviews showed that awe and wonder were more likely to occur when watching the simulated Earth view instead of the Deep Space view. Our study is a success- ful example of neurophenomenology, a powerful and promising interdisciplinary approach for future studies of complex states of experience.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.