Abstract
The effects of 3-methoxycarbonyl- (beta-CCM, Ia), 3-ethoxycarbonyl- (beta-CCE, Ic), 3-propoxycarbonyl- (PrCC, Ie), 3-N-methylcarboxamido- (FG-7142, Ig) beta-carboline and 2-acetyl-3-methoxycarbonyl-1,2-dihydro-beta-carboline (IIa) as well as of their corresponding 9-acetyl derivatives (Ib, Id, If, Ih and IIb) have been studied in rabbits. In addition, the effects of 6,7-dimethoxy-4-ethyl-3-methoxycarbonyl-beta-carboline (DMCM) have also been studied. In in vitro studies, these drugs compete with 3H-diazepam to benzodiazepine (BDZ) receptor in membrane preparations from brain cortex. The values of IC50 are in the nanomolar range without significant differences between the acetyl derivatives and their congeners only compound If shows a 10-fold decrease of the binding capacity in respect to its congener Ie. In the presence of 10(-5) M GABA, a decrease in the binding capacity for DMCM, Ia, Ic and Ig and an increase for If are observed. In vivo studies show that DMCM, Ia, Ib, IIa and IIb elicit three dose-dependent stages of electrocortical changes (trains of slow waves, trains of spike-and-wave complexes and "grand-mal" seizures). Compounds Ic, Id and Ig elicit only the first two stages. Compound Ih elicits only the first stage. While compound Ie does not affect the EEG pattern, its 9-acetyl derivative If induces changes (cortical spindles and disruption of the hippocampal theta waves) characteristic of agonist ligands of BDZ receptor. These findings confirm that the efficacy of compounds DMCM, Ia, Ic, Id, Ig and Ih as inverse agonists of BDZ receptor in the EEG paradigm parallels the reduction of their apparent binding affinity in the presence of GABA. The 9-acetylated compounds may be more inverse agonist in vivo than predicted from the in vitro findings, due to hydrolysis in the plasma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.