Abstract

Glioblastoma (GBM) is the most common malignant primary brain tumor with a universally poor prognosis. GBMs express elevated levels of hexokinase 2 (HK2), catalyzing the critical step in glycolysis and influencing several oncogenic pathways. Previous preclinical work has suggested a role for repurposed posaconazole (PCZ) in downregulating HK2 activity, reducing lactate and pyruvate production, interfering with tumor cell metabolism, and increasing mouse survival. To establish brain tumor penetrance, neuropharmacokinetic profile, and mechanistic effect on tumor cell metabolism of PCZ in adults with GBM. This is an open label, nonrandomized, parallel arm trial involving patients with GBM. Cohorts will receive PCZ (intervention, n = 5) or will not receive PCZ (control, n = 5), followed by tumor resection and microdialysis catheter placement. Dialysate, plasma, and tumor samples will be analyzed for lactate and pyruvate concentrations. Tumor samples will also be assessed for PCZ concentration, HK2 expression, angiogenesis, and apoptosis. PCZ's neuropharmacokinetics will be determined based on the concentration vs time profile and area under the curve 0 to 24 hours of PCZ concentration in the brain interstitium. (1) Increased PCZ concentration in contrast-enhancing brain regions compared with nonenhancing regions; (2) inverse correlation between lactate/pyruvate and PCZ concentrations in dialysate samples from treated patients, over time; and (3) decreased HK2 activity in PCZ-treated tumor samples. A successful trial will support the decision to proceed to advanced phase trials. Any tumor penetration by PCZ, with concomitant effect on glycolysis, warrants further in-depth analysis, as therapeutic options for these deadly tumors are currently limited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.