Abstract

Neuropeptides are ubiquitous in the sympathetic system and modulate transmission at the levels of the intermediolateral cell column, sympathetic ganglia, and neuroeffector junctions. Several neuropeptide-containing pathways from the hypothalamus and medulla modulate excitability of preganglionic neurons. Neuropeptides coexist with norepinephrine or acetylcholine in subpopulations of chemically coded, target-specific sympathetic ganglion neurons. Neuropeptide Y is colocalized in adrenergic vasoconstrictor neurons, whereas vasoactive intestinal polypeptide is colocalized in cholinergic sudomotor neurons. Neuropeptide expression is plastic; during development, neurons that switch from a noradrenergic to a cholinergic phenotype increase expression of vasoactive intestinal polypeptide, somatostatin, and substance P. Preganglionic inputs increase neuropeptide Y and inhibit substance P expression. Sympathetic denervation produces sprouting of sensory fibers containing substance P and calcitonin gene-related peptide in target tissues. Neuropeptides from preganglionic fibers (e.g., enkephalin) and primary afferents (e.g., substance P, vasoactive intestinal polypeptide) modulate transmission in sympathetic ganglia. Neuropeptide Y produces vasoconstriction, prejunctional inhibition of norepinephrine release, and postjunctional potentiation of norepinephrine effects. Plasma neuropeptide Y increases during intense sympathoexcitation, hypertension, and pheochromocytoma. Dystrophic neurites containing neuropeptide Y occur in human sympathetic ganglia during aging, diabetes, and dysautonomia. Sympathetic neuropeptides may thus have important clinical implications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call