Abstract

As tissue-resident immune cells, mast cells are frequently found in close proximity to afferent neurons and are subjected to immunoactive mediators secreted by these neurons, including substance P (SP) and calcitonin gene-related peptide (CGRP). Neurogenic inflammation is thought to play an important role in the pathophysiology of many diseases. Unraveling the cellular mechanisms at the interface between the immune response and the peripheral nervous system is important for understanding how these diseases arise and progress. In this work, mast cell degranulation following direct exposure to CGRP and SP was studied both at the bulk and single-cell levels to characterize the mouse peritoneal mast cell response to neuropeptides and compare this response to well-studied mast cell activation pathways. Results show that mast cells secrete fewer chemical messenger-filled granules with increased IgE preincubation concentrations. The biophysical characteristics of mast cell degranulation in response to SP and CGRP is in many ways similar to calcium ionophore-induced mast cell degranulation; however, neuropeptide-stimulated mast cells secrete reduced chemical messenger content per secretion event, resulting in an overall relative decrease in secreted chemical messengers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.