Abstract
Nitric oxide (NO) and calcitonin gene-related peptide (CGRP), potent vasodilators in the meninges,may be involved in the pathophysiology of vascular headaches such as migraine pain. NO donators can provoke headache attacks in migraineurs and increased levels of CGRP have been found in the venous outflow from the head during migraine attacks. We therefore examined the effect of both NO and CGRP on dural blood, a process which may parallel nociceptive processes in the meninges. 1. Arterial blood flow was measured in the exposed dura mater encephali of the rat using laser Doppler flowmetry. Local application of different NO donors (SNAP,NONOate, and NOC-12) caused dose-dependent increases in meningeal blood flow. CGRP(8-37) at 10(-4) M did not significantly change the basal flow but attenuated increases in blood flow caused by the NO donors at concentrations of 10(-5)-10(-3) M.2. In another series of experiments, the hemisected skulls of adult Wistar rats, complete with intact dura mater, were filled with oxygenated synthetic interstitial fluid (SIF) and the CGRP content of this fluid was assessed every 5 min. When the NO donator NONOate, at concentrations of 10(-5)-10(-3) M, was added to the SIF, or when the SIF was bubbled with NO gas (1000 ppm in N(2) atmosphere) instead of carbogen, CGRP release increased in a concentration-dependent manner. We conclude that the vasodilatory effect of NO that causes increased meningeal blood flow is in part the result of both stimulating the release of CGRP and promoting the vasodilatory action of CGRP. Since NO donors such as nitroglycerin are known to provoke headache and CGRP is released during migraine pain, the NO-stimulated CGRP release may be relevant for the development of vascular headaches that are accompanied by meningeal hyperaemia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.