Abstract

Neuropeptides are known to modulate female receptivity. However, even though receptivity is a spinal reflex, the role of neuropeptides within the spinal cord remains to be elucidated. The aims were to (i) investigate neuropeptides in the lumbosacral region; and (ii) determine how neuropeptides modulate glutamate release from stretch Ia fibers, touch sensation Abeta fibers and Adelta/C pain fibers. Neuropeptide modulation of the lumbosacral dorsal-root ventral-root reflex in vitro. Spinal cords were removed from Sprague-Dawley rats in compliance with UK Home Office guidelines. Hemisected cords were superfused with aCSF and the dorsal root (L4-S1) was stimulated to evoke glutamate release. A biphasic reflex response was evoked from the opposite ventral root consisting of a monosynaptic (Ia fibers) and polysynaptic (Abeta, Adelta/C fibers) component. The micro opioid receptor (MOR) agonist DAMGO inhibited the monosynaptic (EC(50) 0.02 +/- 0.02 nM) and polysynaptic area (EC(50) 125 +/- 167 nM) but not polysynaptic amplitude. Oxytocin and corticotrophin releasing factor (CRF) inhibited the monosynaptic amplitude (EC(50), 1.4 +/- 1.0 nM and EC(50) 4.3 +/- 3.5 nM, respectively), polysynaptic amplitude (EC(50) 18.2 +/- 28.0 nM and EC(50), 9.5 +/- 13.3 nM, respectively), and area (EC(50) 11.6 +/- 13.0 nM and EC(50), 2.8 +/- 3.3 nM, respectively); effects that were abolished by oxytocin and CRF(1) antagonists, L-368899 and 8w. Melanocortin agonists solely inhibited the monosynaptic component, which were blocked by the MC(3/4) receptor antagonist SHU9119. These data suggest endogenous neuropeptides are released within the lumbosacral spinal cord. Melanocortin agonists, oxytocin, CRF, and DAMGO via MC(4), oxytocin, CRF(1), and MOR inhibit glutamate release but with differing effects on afferent fiber subtypes. Melanocortins, oxytocin, CRF, and DAMGO have the ability to modulate orgasm whereas oxytocin, CRF and DAMGO can increase pain threshold. Oxytocin and CRF may dampen touch sensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.