Abstract

This study examined the effects of electrically stimulating submucosal neurons in the guinea pig isolated distal colonic mucosa and determined the effects of several peptides that are present in these neurons. Electrical field stimulation of muscle-stripped segments of guinea pig distal colonic mucosa, set up in Ussing flux chambers, evoked an increase in short-circuit current ( I sc), of 371 ± 31 μA · cm −2. The response to electrical stimulation was abolished by tetrodotoxin and significantly reduced by serosal furosemide. Atropine reduced, but did not abolish, the neurally evoked response. Addition of neuropeptide Y and galanin to the serosal bath had no effect on baseline I sc, but both evoked a concentration-dependent decrease in the neurally evoked secretory response. Vasoactive intestinal polypeptide evoked a concentration-dependent increase in basal (unstimulated) I sc that was reduced by furosemide and unaltered by tetrodotoxin. Neuropeptide Y, but not galanin, significantly reduced the secretory responses to vasoactive intestinal polypeptide and bethanechol. Somatostatin 201–995 and human calcitonin gene-related peptide had no effect on basal I sc nor did either alter the neurally evoked response. These results suggest that acetylcholine and non-cholinergic neurotransmitter(s) stimulate chloride secretion in the guinea pig distal colonic mucosa. This neurosecretory response may be modulated by neuropeptide Y and galanin that are found within submucosal neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.