Abstract

Brain lesions exclusive to dystonia, or specific forms of it, such as isolated dystonia, have been rarely described. While the identification of distinctive intra- or extraneuronal abnormalities in childhood-onset generalized dystonia (DYT1) brains remains lacking, recent stereology-based findings demonstrated hypertrophy of neurons in the substantia nigra (SN) of DYT1-carriers manifesting dystonia (DYT1-manif) versus DYT1-carriers nonmanifesting dystonia (DYT1-nonmanif), and age-matched control subjects (C). Because other brain regions including the cerebellum (CRB) have been implicated in the pathomechanisms of dystonia, we investigated neurons of the dentate nucleus (DN), the "door-out" nucleus of the CRB. We performed systematic neuropathologic assessments and stereology-based measurements of 7 DN from DYT1-carriers (DYT1-DN; 4 DYT1-manif and 3 DYT1-nonmanif), and 5 age-matched control (C-DN) subjects. Data demonstrated larger cell body (+14.1%), nuclear (+10.6%), and nucleolar (+48.3%) volumes of DYT1-DN versus C-DN neurons. No differences in intra- and extracellular pathological indicators (β-amyloid, pTau, α-synuclein, Torsin1A, Negri, Bunina, Hirano, Marinesco, Nissl bodies, Buscaino bodies, granulovacuolar degeneration, or cerebrovascular lesions) were detected in DYT1-DN versus C-DN. Astroglial reactivity (GFAP) and microglial activation (IBA1) were observed in some DYT1-DNs. These novel findings confirm involvement of the DN and CRB in the pathogenesis of DYT1 and perhaps of other forms of isolated dystonia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call