Abstract

We have developed an animal model in Swiss Webster mice to identify mechanisms by which prenatal exposure to cocaine results in persistent alterations in brain structure and function. Clinical data suggests that children who demonstrate the largest impairments in prenatal brain growth, which are positively correlated with the highest level of prenatal cocaine exposure, are more likely to demonstrate selective impairment in postnatal brain growth, as well as postnatal impairments in motor function, attention and language skills. We conducted neuroanatomic studies to identify the postnatal evolution of structural changes in the primary somatosensory (SI) cortex of the developing mouse brain following prenatal exposure to cocaine. Our previous work, and that of others, provides evidence that many of the processes underlying corticogenesis are disrupted by gestational exposure of the developing mouse brain to cocaine, and that from the earliest phases of corticogenesis that there is an imprecision in the development of cortical lamination. We performed morphometric comparisons between the brains of animals prenatally exposed to varying amounts of cocaine with vehicle and malnutrition controls on postnatal (P) days P9 and P50. We found that on P50, but not P9, the relative number of cortical neurons in S1 is significantly less in cocaine exposed animals as compared with controls. The significant decrease in the number of cells in cocaine exposed animals on P50 is evident as a decreased density of cells restricted to the infragranular compartment (layers V and VI). Those changes are not seen in malnourished animals.Taken together our findings support the conclusion that cocaine-induced alterations in SI cortical cytoarchitectonics are in part a consequence of altered postnatal survival of infragranular cortical neurons, which are lost during the interval between P9 and P50. Determining whether a similar process is evident in a subset of humans following in utero cocaine exposure is a high priority for future clinical brain imaging studies, because analogous structural changes could impact the brain function and behavioral repertoire of infants and children following significant prenatal exposures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.