Abstract

1. Neurons in the pretectal nuclear complex that project to the ipsilateral dorsal lateral geniculate nucleus (LGNd) were identified by antidromic activation after electrical LGNd stimulation in awake cats, and their response properties were characterized to retinal image shifts elicited either by external visual stimulus movements or during spontaneous saccadic eye movements on a stationary visual stimulus, and to saccades in darkness. Eye position was monitored with the use of a scleral search coil and care was taken to assure stability of the eyes during presentation of moving visual stimuli. 2. Of a total sample of 134 cells recorded, 27 neurons were antidromically activated by electrical LGNd stimulation. In addition, responses from neurons that were not activated from the LGNd were also analyzed, including 19 "retinal slip" cells, which selectively respond to slow horizontal stimulus movements, and 21 "jerk" cells, which are specifically activated by rapid stimulus shifts. All recorded neurons were located in the nucleus of the optic tract and in the posterior pretectal nucleus. 3. In the light, neurons identified as projecting to the LGNd responded maximally to saccadic eye movements and to externally generated sudden shifts of large visual stimuli. Slow stimulus drifts did not activate these neurons. Response latencies were shorter and peak activities were increased during saccades compared with pure visual stimulation. No systematic correlation between response latency, response duration, or the number of spikes in the response and saccade direction, saccade amplitude, or saccade duration was found. Saccades and rapid stimulus shifts in the light also activated jerk cells but not retinal slip cells. 4. All 27 antidromically activated neurons also responded to spontaneous saccadic eye movements in complete darkness. Responses to saccades in the dark, however, had longer response latencies and lower peak activities than responses to saccades in light. As in the light, response parameters in darkness seemed not to code specific saccade parameters. Cells that were not activated from LGNd were found to be unresponsive to saccades in the dark. 5. According to their specific activation by saccades in darkness, LGNd-projecting pretectal neurons are termed "saccade neurons" to distinguish them from other pretectal cell populations, in particular from jerk neurons, which show similar response properties in light. 6. The saccade-related activation of pretectal saccade neurons may be used to modulate visual responses of LGNd relay cells following saccadic eye movements. Because the pretectogeniculate projection in cat most likely is GABAergic and terminates on inhibitory LGNd interneurons, its activation may lead to a saccade-locked disinhibition of relay cells. This input could counter the strong inhibition induced in the LGNd after shifts of gaze direction and lead to a resetting of LGNd cell activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call