Abstract

We have identified by immunocytochemistry, Western blotting, and RT-PCR the isoforms of laminin expressed by glial cells and neurons cultured from human embryonic brain and spinal cord. We show that most of the known laminins are present in human neurons and glial cells. Importantly, Western analysis demonstrates that the isoforms of laminin present in embryonic human brain differ from those expressed in human spinal cord. Neurons of the brain and spinal cord also express their distinct and characteristic isoforms of laminin compared to the glial cells of the same CNS regions. These results suggest that, in addition to the known laminins, several novel isoforms may exist in the human embryonic CNS. The observed differences between the isoforms of laminin in brain and spinal cord neurons and glial cells may result from primary structural changes or from posttranslational modifications, e.g., variations in glycosylation. Thus, identification of these novel laminins and determination of their function(s) should further our understanding of the mechanisms of aging, disease, and trauma in the human CNS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.