Abstract

The human cortical amygdaloid nucleus (CoA) receives exteroceptive sensory stimuli, modulates the functions coded by the intrinsic amygdaloid circuit, and constitutes the beginning of the limbic lobe continuum with direct and indirect connections toward subcortical, allocortical, and higher order neocortical areas. To provide basic data on the human CoA, we characterized and classified the neurons using the thionin and the "single-section" Golgi method adapted for postmortem brain tissue and light microscopy. We found 10 different types of neurons named according to the morphological features of the cell body, dendritic branches, and spine distribution. Most cells are multipolar spiny neurons with two or more primary dendrites, including pyramidal-like ones. Three-dimensional reconstructions evidenced the types and diversity of the dendritic spines in each neuron. The unlike density of spines along dendritic branches, from proximal to distal ones, indicate that the synaptic processing and plasticity can be different in each CoA neuron. Our study provides novel data on the neuronal composition of the human CoA indicating that the variety of cells in this region can have phylogenetic, ontogenetic, morphological, and likely functional implications for the integrated human brain function. This can reflect both a more complex subcortical synaptic processing of sensory and emotional information and an adaptation for species-specific social behavior display.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.