Abstract

Neuronal differentiation involves both morphological and electrophysiological changes, which depend on calcium influx. Voltage-gated calcium channels (VGCCs) represent a major route for calcium entry into neurons. The recently cloned low-voltage-activated T-type calcium channels (T-channels) are the first class of VGCCs functionally expressed in most developing neurons, as well as in neuroblastoma cell lines, but their roles in neuronal development are yet unknown. Here, we document the part played by T-channels in neuronal differentiation. Using NG108-15, a cell line that recapitulates early steps of neuronal differentiation, we demonstrate that blocking T-currents by nickel, mibefradil, or the endogenous cannabinoid anandamide prevents neuritogenesis without affecting neurite outgrowth. Similar results were obtained using antisense oligodeoxynucleotides directed against the alpha1H T-channel subunit. Furthermore, we describe that inhibition of alpha1H T-channel activity impairs concomitantly, but independently, both high-voltage-activated calcium channel expression and neuritogenesis, providing strong evidence for a dual role of T-channels in both morphological and electrical changes at early stages of neuronal differentiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call