Abstract

We study how sensory neurons detect and transmit a weak external stimulus. We use the FitzHugh–Nagumo model to simulate the neuronal activity. We consider a sub-threshold stimulus, i.e., the stimulus is below the threshold needed for triggering action potentials (spikes). However, in the presence of noise the neuron that perceives the stimulus fires a sequence of action potentials (a spike train) that carries the stimulus’ information. To yield light on how the stimulus’ information can be encoded and transmitted, we consider the simplest case of two coupled neurons, such that one neuron (referred to as neuron 1) perceives a subthreshold periodic signal but the second neuron (neuron 2) does not perceive the signal. We show that, for appropriate coupling and noise strengths, both neurons fire spike trains that have symbolic patterns (defined by the temporal structure of the inter-spike intervals), whose frequencies of occurrence depend on the signal’s amplitude and period, and are similar for both neurons. In this way, the signal information encoded in the spike train of neuron 1 propagates to the spike train of neuron 2. Our results suggest that sensory neurons can exploit the presence of neural noise to fire spike trains where the information of a subthreshold stimulus is encoded in over expressed and/or in less expressed symbolic patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.