Abstract

Starting from pluripotent stem cells that virtually proliferate indefinitely, the orderly emergence during organogenesis of lineage-restricted cell types exhibiting a decreased proliferative capacity concurrently with an increasing range of differentiation traits implies the occurrence of a stringent spatiotemporal coupling between cell-cycle progression and cell differentiation. A recent computational modeling study has explored in the context of neurogenesis whether and how the peculiar pattern of connections among the proneural Neurog2 factor, the Hes1 Notch effector and antagonistically-acting G1-phase regulators would be instrumental in this event. This study highlighted that the strong opposition to G1/S transit imposed by accumulating Neurog2 and CKI enables a sensitive control of G1-phase lengthening and terminal differentiation to occur concomitantly with late-G1 exit. Contrastingly, Hes1 promotes early-G1 cell-cycle arrest and its cell-autonomous oscillations combined with a lateral inhibition mechanism help maintain a labile proliferation state in dynamic balance with diverse cell-fate outputs, thereby, offering cells the choice to either keep self-renewing or differentiate into distinct cell types. These results, discussed in connection with Ascl1-dependent neural differentiation, suggest that developmental fate decisions exploit the inherent flexibility of cell-cycle gap phases to generate diversity by selecting subtly-differing patterns of connections among components of the cell-cycle machinery and differentiation pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.