Abstract

The adult auditory cortex is capable of a plastic reorganization of its tonotopic map after damage to restricted parts of the cochlear sensory epithelium. We examine the precise conditions of cochlear damage required to demonstrate such plasticity in the primary auditory cortex (A1) of the cat and the changes observed in neuronal responses in the A1 which has reorganized in plasticity of the tonotopic map. From these data we attempt to predict the conditions required for similar plasticity to occur in humans after coachlear damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.