Abstract

The brain exhibits limited capacity for spontaneous restoration of lost motor functions after stroke. Rehabilitation is the prevailing clinical approach to augment functional recovery, but the scientific basis is poorly understood. Here, we show nearly full recovery of skilled forelimb functions in rats with large strokes when a growth-promoting immunotherapy against a neurite growth-inhibitory protein was applied to boost the sprouting of new fibers, before stabilizing the newly formed circuits by intensive training. In contrast, early high-intensity training during the growth phase destroyed the effect and led to aberrant fiber patterns. Pharmacogenetic experiments identified a subset of corticospinal fibers originating in the intact half of the forebrain, side-switching in the spinal cord to newly innervate the impaired limb and restore skilled motor function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.