Abstract

Cystathionine β-synthase (CBS), expressed in astrocytes, generates a gaseous neuromodulator, hydrogen sulfide (H2S) in the central nervous system (CNS). However, little is known about the regulatory mechanisms of astrocytic CBS expression and activity. This study evaluated the influence of neurons on astrocytic CBS expression by employing multiple culture systems. Substantial CBS expression was observed in the intact neonatal rat spinal cord, while CBS content was markedly reduced in an astrocyte-enriched culture prepared from the neonatal spinal cord. Immunofluorescence analysis confirmed the localization of spinal cord CBS in astrocytes, but not in neurons. Although CBS expression was weak in the embryonic rat spinal cord, enzyme levels were time-dependently increased in a neuron/astrocyte mixed culture originating from embryonic spinal cord. The reduced CBS expression in isolated neonatal astrocytes was restored by co-culture with embryonic neurons. Together with the observed CBS expression levels, H2S production was relatively low in astrocytes cultured alone, but was considerably higher in astrocytes cultured with neurons. These results indicate that neurons are essential for maintaining the expression and H2S-producing activity of astrocytic CBS in the rat spinal cord.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.