Abstract
Despite extensive gray matter loss following spinal cord injury (SCI), little attention has been given to neuronal replacement strategies and their effects on specific functional circuits in the injured spinal cord. In the present study, we assessed breathing behavior and phrenic nerve electrophysiological activity following transplantation of microdissected dorsal or ventral pieces of rat fetal spinal cord tissue (FSC D or FSC V, respectively) into acute, cervical (C2) spinal hemisections. Transneuronal tracing demonstrated connectivity between donor neurons from both sources and the host phrenic circuitry. Phrenic nerve recordings revealed differential effects of dorsally vs. ventrally derived neural progenitors on ipsilateral phrenic nerve recovery and activity. These initial results suggest that local gray matter repair can influence motoneuron function in targeted circuits following spinal cord injury and that outcomes will be dependent on the properties and phenotypic fates of the donor cells employed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.