Abstract

BackgroundWe are currently investigating microglial activation and neuronal precursor cell (NPC) proliferation after transient middle cerebral artery occlusion (tMCAo) in rats. This study aimed: (1) to investigate differences in hippocampal NPC proliferation in outbred male spontaneously hypertensive rats (SHRs) and Sprague-Dawley rats (SDs) one week after tMCAo; (2) to present the practical use of the optical fractionator and 2D nucleator in stereological brain tissue analyses; and (3) to report our experiences with an intraluminal tMCAo model where the occluding filament is advanced 22 mm beyond the carotid bifurcation and the common carotid artery is clamped during tMCAo.MethodsTwenty-three SDs and twenty SHRs were randomized into four groups subjected to 90 minutes tMCAo or sham. BrdU (50 mg/kg) was administered intraperitoneally twice daily on Day 4 to 7 after surgery. On Day 8 all animals were euthanized. NeuN-stained tissue sections were used for brain and infarct volume estimation with the 2D nucleator and Cavalieri principle. Brains were studied for the presence of activated microglia (ED-1) and hippocampal BrdU incorporation using the optical fractionator.ResultsWe found no significant difference or increase in post-ischemic NPC proliferation between the two strains. However, the response to remote ischemia may differ between SDs and SHRs. In three animals increased post-stroke NPC proliferation was associated with hippocampal ischemic injury. The mean infarct volume was 89.2 ± 76.1 mm3 in SHRs and 16.9 ± 22.7 mm3 in SDs (p < 0.005). Eight out of eleven SHRs had ischemic neocortical damage in contrast to only one out of 12 SDs. We observed involvement of the anterior choroidal and hypothalamic arteries in several animals from both strains and the anterior cerebral artery in two SHRs.ConclusionsWe found no evidence of an early hippocampal NPC proliferation one week after tMCAo in both strains. Infarction within the anterior choroidal artery could induce hippocampal ischemia and increase NPC proliferation profoundly. NPC proliferation was not aggravated by the presence of activated microglia. Intraluminal tMCAo in SHRs gave a more reliable infarct with neocortical involvement, but affected territories supplied by the anterior cerebral, anterior choroidal and hypothalamic arteries.

Highlights

  • We are currently investigating microglial activation and neuronal precursor cell (NPC) proliferation after transient middle cerebral artery occlusion in rats

  • Inspired by the work of Marks et al [15] and Perfilieva et al [14], we investigated the differences in infarct distribution and NPC proliferation after transient middle cerebral artery occlusion (tMCAo) in outbred male spontaneously hypertensive rats (SHRs) and Sprague-Dawley rats (SDs)

  • The aim of the present study was three-fold: (1) to investigate whether the hippocampal NPC proliferation differed between outbred male SDs and SHRs one week after tMCAo; (2) to present the practical use of the 2D nucleator combined with the Cavalieri principle and the optical fractionator in stereological tissue analysis; and (3) to report the use of an intraluminal tMCAo model in rats where the occluding filament is advanced 22 mm beyond the carotid bifurcation and the common carotid artery is clamped during tMCAo

Read more

Summary

Introduction

We are currently investigating microglial activation and neuronal precursor cell (NPC) proliferation after transient middle cerebral artery occlusion (tMCAo) in rats. Hypertensive rats (SHRs) have been widely used in studies of transient cerebral ischemia and have several characteristics that make them suitable for these studies: (1) a higher success rate and reproducibility in transient and permanent models of middle cerebral artery occlusion [8,9,10,11,12,13]; (2) a higher basal rate of neurogenesis [14]; (3) a pronounced neuroinflammatory response after stroke [15]; and (4) hypertension is one of the most prominent risk factors in the pathogenesis of the ischemic stroke

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call