Abstract

The mammalian olfactory system has the unique property in the permanent turnover of the olfactory sensory neurons under normal conditions and following injury. This implies that the topographical map of the epithelium-to-bulb connections generated during ontogenesis has to be maintained despite neuron renewal in order to insure olfactory information processing. One way to investigate this issue has been to disrupt the peripheral connections and analyze how neural connections may be reestablished as well as how animals may perform in olfactory-mediated tasks. This review surveys the main data pertaining to both morphological and functional recoveries taking place in the peripheral olfactory system following olfactory bulb deafferentation. Conclusions from these studies are enlightened by recent data from molecular biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.