Abstract

The past two decades have witnessed the emergence of a new and expanding field of neurological diseases--the genetic ion channelopathies. These disorders arise from mutations in genes that encode ion channel subunits, and manifest as paroxysmal attacks involving the brain or spinal cord, and/or muscle. The voltage-gated P/Q-type calcium channel (P/Q channel) is highly expressed in the cerebellum, hippocampus and cortex of the mammalian brain. The P/Q channel has a fundamental role in mediating fast synaptic transmission at central and peripheral nerve terminals. Autosomal dominant mutations in the CACNA1A gene, which encodes voltage-gated P/Q-type calcium channel subunit α(1) (the principal pore-forming subunit of the P/Q channel) are associated with episodic and progressive forms of cerebellar ataxia, familial hemiplegic migraine, vertigo and epilepsy. This Review considers, from both a clinical and genetic perspective, the various neurological phenotypes arising from inherited P/Q channel dysfunction, with a focus on recent advances in the understanding of the pathogenetic mechanisms underlying these disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call