Abstract

The Large gene encodes a putative glycosyltransferase that is required for normal glycosylation of dystroglycan, and defects in either Large or dystroglycan cause abnormal neuronal migration. The mechanism for this effect is not fully understood. This study analyzes the Largemyd mouse cerebellum during postnatal cerebellar development. Large is shown to be expressed most strongly in the Bergmann glial cells and Purkinje cells throughout cerebellar development, which is similar to what is known for dystroglycan expression. Discontinuities of the pial surface of the developing Largemyd mouse cerebellum correlate with disruption of the normal organization of the external granule cell layer and Bergmann glial fibers. At early time points, granule neurons express differentiation markers normally, both temporally and spatially, and show no defects in neurite outgrowth in in vitro assays. However, granule neuron migration is delayed within the external granule and molecular layers, resulting in granule neurons undergoing their intrinsically programmed differentiation in inappropriate locations. Consequently, cells expressing mature granule neuron markers become stranded within these layers. The cause of the less efficient migration is likely due to both physical disruption of the glial-guide scaffolding, as well as to suboptimal neuronal-glial guide interactions during migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.