Abstract
Monoclonal immunoglobulin-G (IgG) antibodies are now emerging as therapeutic tools to tackle various disorders, including those affecting the brain. However, little is known about how these IgG molecules behave in the brain. To better understand the potential behavior of IgG molecules in the brain, here we established a specific protocol to immunolocalize rat IgG injected into mouse striatum with an anti-rat IgG antibody. Using double immunolabeling, IgG-like immunoreactivity (IR) was mainly found in neurons but scarcely observed in glia 1h after intrastriatal injection of IgG, whereas some surrounding glia contained IgG-like IR 24h after injection. However, preabsorption with a large excess of rat IgG to confirm the authenticity of this labeling failed to eliminate this neuronal IgG-like IR but rather exhibited nuclear staining in glial cells. Because this unexpected nuclear staining escalated with increasing amount of absorbing IgG, we postulated that this nuclear staining is due to formation of immune complex IgG-anti-IgG, which can be removed by centrifugal filtration. As expected, this nuclear staining in glial cells was eliminated after centrifugal filtration of the IgG/anti-IgG mixture, and authentic IgG-like IR was chiefly detected in the cytoplasm of neurons around the injection channel. This study is the first demonstration of neuronal redistribution of injected IgG in the mouse brain. Neuronal internalization of exogenous IgG may be advantageous especially when the therapeutic targets of monoclonal IgG are intraneuronal such as neurofibrillary tangles or Lewy bodies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.