Abstract
Temporal lobe epilepsy (TLE) is the most common type of human epilepsy and has been related with extensive loss of hippocampal pyramidal and dentate hilar neurons and gliosis. Many characteristics of TLE are reproduced in the pilocarpine model of epilepsy in mice. This study analyzed the neuronal damage, assessed with Fluoro-Jade (FJB) and cresyl violet, and gliosis, investigated with glial fibrilary acidic protein (GFAP) immunohistochemistry, occurring in the hippocampal formation of mice at 3, 6, 12 and 24h, 1 and 3 weeks after the pilocarpine-induced status-epilepticus (SE) onset. The maximum neuronal damage score and the FJB-positive neurons peak were found in the hilus of dentate gyrus 3 and 12h after SE onset (P<0.05), respectively. At 1 week after SE onset, the greatest neuronal damage score was detected in the CA1 pyramidal cell layer and the greatest numbers of FJB-positive neurons were found both in the CA1 and CA3 pyramidal cell layers (P<0.05). The molecular, CA3 and CA1 pyramidal cell layers expressed highest presence of GFAP immunoreaction at 1 and 3 weeks after SE onset (P<0.05). Our findings show that, depending on the affected area, neuronal death and gliosis can occur within few hours or weeks after SE onset. Our results corroborate previous studies and characterize short time points of temporal evolution of neuropathological changes after the onset of pilocarpine-induced SE in mice and evidences that additional studies of this temporal evolution may be useful to the comprehension of the cellular mechanisms underlying epileptogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.